It’s a smart city after all (2) -WARNING: long read!-

By augustus 3, 2017 april 8th, 2019 Algemeen

The Smart City-model is taken more or less as a given good for creating sustainable cities. This view is deeply rooted in seductive visions of the future, where the digital revolution stands as the primary force for change. Smart grids and meters, automated transport systems, communication networks, and data collection and analysis of data are all part of the smart city vision. While the seamless integration of digital technologies for the management of city functions promises greater cost-effectiveness and efficiencies, there are significant questions and philosophical issues that must be addressed as greater reliance on technologies for the running of cities is pursued. Employing a sort of a cyborg worldview—meaning a living system of intertwined human and machine parts—the Smart City system is seen as contributing to urban sustainability with the basic assumption that the Internet of Things serves social and public ends. These ends include economic benefits, improving efficiency and quality of life for people by optimizing control of infrastructures. In this view, urban residents are at the center of a city’s sustainability transformation, while at the same time serving as data sources, providing urban planners (central controllers of the cyborg) various sources of information about human behavior that may or may not be exploited. While various efficiency measures often are beneficial for society, at least in the short term, the discussions of resilience of such a cyborg is mostly entirely avoided.

So, increased novel technologies are changing the nature of cities, more information dense and more globalized than ever. These changes are not incremental and linear, but transformative with the emergence of a new intricate system behavior and new forms of systemic complexity. The nature of these changes pose fundamentally new challenges to governance as they require policy-makers to respond to system properties characterized by not only complex causality, but also extreme connectivity (i.e. global), ultra-speed (i.e. micro-seconds) and hyperfunctionality. Governance can fail at the system level if a subsystem performs its function to such an extreme; this could jeopardize the efficiency of the system as a whole.

Using an urban ecology lens, we provide some reflections that need to forgo any wider-scale implementation of the Smart City-model with the goal to enhance urban sustainability and develop  fundamental principles and rules of urban life that could have their most valuable applications: transforming cities into life-regenerative ecosystems, and reconnecting those ecosystems to the broader natural ones. Principles and rules based on the fact that nature is the process of going from simple to complex – from fragile to antifragile. Nature is a network of expanding adjacent possibles. Nature is the connections.

Life builds from the bottom up. Layer by layer, ecosystems have evolved from bare rock, concentrating and transforming locally available, easily accessible, abundant resources into dynamic complex systems that promote and reward interconnection and interdependence. Cities have also evolved in a similar way, the layering here is historic and often based on ways of economic and industrial change. The challenge then is to think of a city as a constantly evolving co-managed rainforest, savannah or reef, intrinsically intertwined with the ecosystem in which it resides.

A city is a COMPLEX ADAPTIVE SYSTEM – SYSTEM(S) whose behavior is in constant flux, prone to quite intricate emergent patterns including unavoidable uncertainties, cascading failures, and surprise. Continuous innovation and evolution are key aspects of urban systems as hardware, software and human innovation drive the system towards higher (perceived at least) efficiency, connectivity and speed over time. The speed of innovation and associated technologies however, has created new forms of system properties that until now remain to be explored: connectivity, speed and hyperfunctionality.

Urban sustainability is marked by a FRAGILE BALANCE between biotic living organisms and the non-living a-biotic factors of their environment, governed by a dynamic equilibrium. The urban ecosystem relies on the reciprocal relations between living elements and the infrastructure that conditions their quality of life. These systems can be found in a variety of scales and in many aspects of our lives, but a violation of their delicate balance will almost certainly instigate a process of compensation in order to regain stability. Moving beyond the traditional binary separating the natural from the artificial, towards a more porous integration of the biotic and a-biotic can imbue our cities with greater resilience and sustainability.

CITIES ARE UNIQUE among all landscape types because they are where the human-inhabited, built, and ecosystem services provisioning spaces overlap and interact. Urban systems of course contain the particular physical environment within which and with which the organisms interact. Sunlight for photosynthesis, the cues of daylength and the seasonal swings of temperature, the exaggerated heat budgets, the stresses of low humidity, the soils, rubble, and fill as substrates, the rush of wind through the streets or the stagnation of air in deep street canyons, and the alteration of topography, with its importation of stone and the alkaline ingredients of concrete, are among the many aspects of urban physical environments.

All of these interacting components define the basic idea of the urban ecosystem. All of these components reflect the desires, plans, mistakes, accidents, and unintentional effects of decisions made by individual people, households, and institutions. Clearly the physical environments of cities are constructed by or profoundly modified by people. Equally clearly, the biological complex of cities where humans are the predominant actor, has social features as well as compositional and spatial biodiversity.

This complexity and dynamism fits easily within the basic definition of the ecosystem, and invites the burgeoning of specific models that contribute to surprise, delight, and utility in the urban sciences and design professions. Understanding how such urban ecosystems functions, how they change, and what limits their performance can add to an understanding of ecosystem change and governance in an ever more human-dominated world.

Our cities are currently not as well adapted or resilient as the ecosystems they’ve disrupted and are nested within. Ecosystems are not closed, self-regulating entities that mature to reach equilibrium, instead ecosystems have multiple equilibria and are open, dynamic, highly unpredictable and subject to frequent disturbance. Ecosystems come with temporal dynamics, change, cyclicity and evolution.

While life abounds in cities, diversity is limited and dominated by one species. Cities are the culmination of our species’ survival strategies, helping us mitigate the extremes of environment, shaping our culture, and extending our range on the planet. Compared to systems not dominated by humans, urban ecosystems are highly disturbed environments, very heterogeneous in both space and time: complex mosaics of biological and physical patches in a matrix of infrastructure, human organizations, and social institutions.

Humans and their communities add a new level of complexity. Humans design and build cities on the basis of their preferences and values. By building structure and infrastructure in cities to support their needs, humans redistribute organisms and the fluxes of energy and materials leading to a distinct, biotic diversity and energy and material cycles.

The ecosystem concept in ecology does not fully reflect our current understanding of dynamic human-dominated ecological systems that may operate far from equilibrium. Crucially, ecosystems can change state in response to a spectrum of variable conditions; they have evolved over millions of years through changes in biotic-abiotic interactions. But since the Industrial Revolution, humans have increasingly dominated such interactions, creating novel ecosystem functions never observed before. Yet in ecology, humans are the only species considered to be external to ecosystems. Furthermore, emphasis on the self-regulating nature of ecosystems has limited the view of disturbance that we now know is critical to understanding stability and ecosystem function.

CITIES ARE HYBRID ECOSYSTEMS: the product of co-evolving human and natural systems. Urban ecosystems emerge from complex interactions and feedbacks between the human, natural and technological system components of urban ecosystems. From an ecological viewpoint, they differ markedly from historical ecological systems. But urban ecosystems also differ significantly from historical human settlements: they are novel habitats and contain both natural and human historical features.

As hybrid ecosystems, cities operate at the border of a phase transition between alternative behavioral states governed by either historical or novel feedback mechanisms. As ecosystems are increasingly dominated by human action, they move toward a new set of feedback mechanisms. Their state is unstable.

Therefore it is vital to recognize that urban hybrid ecosystems are highly complex and a product of ongoing emergence, suggesting the need for co-evolutionary approaches to managing the city as a social-ecological system and the integration of ecosystem approaches into spatial planning frameworks. The agents that interact in the complex adaptive systems of the cities are social and biophysical by nature. What differentiates social-ecological systems from non-human complex adaptive systems is that the former deals with humans who apprehend their world through abstract thought. This symbolic construction is based on the ability to use language and symbols, to communicate across space and time. It has to do with the capacity of human beings to learn from the past, imagine the future, and finally materialize these thoughts in new types of entities that only exist in the noosphere (institutions, political and economic structures, as well as values, norms and beliefs).

We need a PARADIGM SHIFT in system design to accommodate the complexities in these highly interdependent and adaptive hybrid urban ecosystems. Myths and uncorroborated assumptions about how nature works, have led to failures in designing and managing urban environments. The assumptions that the elements of a system can be controlled and their boundaries can be defined have dominated system design and engineering for a long time influencing both the field and the practice. We have assumed for a long time that ecosystems are stable and that their processes and dynamics are relatively well understood and predictable, thus one can find an optimal solution among a set of possible alternatives—but that is clearly not the reality in urban ecosystems.

To design complex hybrid systems in which the components are highly diverse, interconnected, and interdependent we must embrace uncertainty and redefine principles of design to acknowledge the complexity of hybrid ecosystems. This implies expanding the heterogeneity of forms and functions in urban structures to support both human and ecological functions and supporting modularity of infrastructures to create interdependent decentralized systems. We need to expand our capacity for experimenting and learning. And most of all we need to find new ways to creatively engage the communities in designing the cities of the future.

There is no doubt that humans are clever ecosystem engineers. We have transported, accumulated and consolidated many resources to shape our cities and yet, for all our cleverness, we have forgotten that we are part of nature and subject to the same rules as the rest of life. Rather than creating conditions conducive to all life we have been focused on our own species’ needs and spent excess energy and resources in maintaining stasis (even if we label that as growth). Cities could currently be viewed as being biophobic, or manifestations of our disconnection from nature.


Technology has always been a critical force deeply intertwined with the evolution of cities. From the first human settlements millennia ago to the industrial revolution to today, technological breakthroughs have impacted the buildings we use, the way we get around and how we live, work and play in the urban space.

Smart is not just collecting and disseminating data. A Smart City as a closed loop system is extremely important and even critical. All attempts at defining Smart Cities -as far as I can oversee- share a number of common elements: sensible (sensors sense the environment), connectable (networked devices bring the sensed information to the Web), accessible (information on our environment is published and is accessible by users on the Web), ubiquitous (users can access information at any time and in any place, while moving), sociable (users acquiring information can publish it though their social network), sharable (sharing is not limited to data, but also to physical objects that may be used when they are in free status), and visible/augmented (the physical environment is retrofitted and information is seen not only by individuals through mobile devices, but also in physical places such as street signs). Artificial intelligence is making breathtaking advances. In particular, it is contributing to the automation of data analysis. Artificial intelligence is no longer programmed line by line, but is now capable of learning, thereby continuously developing itself.

The development of smart cities builds upon this strong historical foundation with a digital foundation that allows cities to function more efficiently, be more responsive to community members and ultimately create better, more equitable urban environments where people thrive.

It is essential to understand how people in cities move, how energy is used, how various aspects of infrastructure interact, and much more, allowing to take better data-driven decisions and maximize the efficiency in our cities. But technology alone cannot transform a city or a community; necessary mechanisms must be included to create incentives for using the technology and for accommodating the human and ecological principles in the loop. When it comes to the efficient management of sharable resources, there is a fundamental conflict between the individual and social, ecological optima.

From the point of view of systems and control theory, a smart city is a highly dynamic stochastic hybrid system with a multitude of issues that can only be successfully addressed through a multidisciplinary approach. Understanding and respecting human behavior and ecological principles is a key component of understanding the smart city as a Cyber-Physical Social System.

The future vitality of our cities is increasingly based on their ability to use digital technologies in innovative, strategic ways. Orchestrating the city’s Cyber-Physical Social System is a combination of art and science that blends cultures, objectives and business models into a dynamic, evolving expression of alignment with the goals of city leaders and citizens, to achieve a common vision of sustainable socio-economic-ecological development at a global scale.