All posts by admin

It is bad enough as it is, but are we not just treating the symptoms …

By | Algemeen | No Comments

The massive transformation enacted by humanity is also why our geological era, which is akin to the operating system on which the living world depends, recently had its name updated to the anthropocene – the age of humanity. So what is the path forward? The necessary solutions for ensuring that our children enjoy healthy and abundant natural habitats are not simple. But one thing is certain. For humanity to head in the right direction, we must take a closer look at what is around us. We cannot count on the blind leading the blind.

The Anthropocene represents the beginning of a very rapid human-driven trajectory of the Earth System away from the glacial– interglacial limit cycle toward new, hotter climatic conditions and a profoundly different biosphere. The current position, at over 1 °C above a preindustrial baseline, is nearing the upper envelope of interglacial conditions over the past 1.2 million years. More importantly, the rapid trajectory of the climate system over the past half century along with technological lock in and socioeconomic inertia in human systems commit the climate system to conditions beyond the envelope of past interglacial conditions. Therefore, it is possible the Earth System may already have passed one ‘fork in the road’, a bifurcation with potentially many trajectories , often represented by the large range of global temperature rises simulated by climate models.

In most analyses, these trajectories are largely driven by the amount of greenhouse gases that human activities have already emitted and will continue to emit into the atmosphere over the rest of this century and beyond—with a presumed quasilinear relationship between cumulative carbon dioxide emissions and global temperature rise. However, biogeophysical feedback processes within the Earth System coupled with direct human degradation of the biosphere, may play a more important role than normally assumed, limiting the range of potential future trajectories and potentially eliminating the possibility of the intermediate trajectories. There is a significant risk that these internal dynamics, especially strong nonlinearities in feedback processes, could become an important or perhaps, even dominant factor in steering the trajectory that the Earth System actually follows over coming centuries.

The trajectory of the Earth System is influenced by biogeophysical feedbacks within the system that can maintain it in a given state (negative feedbacks) and those that can amplify a perturbation and drive a transition to a different state (positive feedbacks). Some of the key negative feedbacks that could maintain the Earth System in Holocene-like conditions— notably, carbon uptake by land and ocean systems—are weakening relative to human forcing, increasing the risk that positive feedbacks could play an important role in determining the Earth System’s trajectory.

Beyond the threshold of 2 °C above preindustrial temperature this intrinsic biogeophysical feedbacks in the Earth System could become the dominant processes controlling the system’s trajectory. Precisely where a potential planetary threshold might be is uncertain. The 2 °C warming could activate important tipping elements, raising the temperature further to activate other tipping elements in a domino-like cascade that could take the Earth System to even higher temperatures (Tipping Cascades). Such cascades comprise, in essence, the dynamical process that leads to thresholds in complex systems. This analysis implies that, even if the Paris Accord target of a 1.5 °C to 2.0 °C rise in temperature is met, we cannot exclude the risk that a cascade of feedbacks could push the Earth System irreversibly onto a ‘Hothouse Earth’ pathway.

A critical issue is that, if a planetary threshold is crossed toward the Hothouse Earth pathway, accessing the Stabilized Earth pathway would become very difficult no matter what actions human societies might take. Beyond the threshold, positive (reinforcing) feedbacks within the Earth System —outside of human influence or control— could become the dominant driver of the system’s pathway, as individual tipping elements create linked cascades through time and with rising temperature.

It is bad enough as it is, but are we not just treating the symptoms …

The discourse around climate change, is about the metric buzzwords – carbon, greenhouse, emissions, temperature, alternative energy etc. Is it possible that in the debate around measuring what’s happening and how badly it’s happening, we have been distracted from a true root cause of ecological crisis?

What is typically measured is that which serves the economic and political interests, and unconscious biases, of those who commission the measurements. The conventional climate discourse is heavily influenced by a geo-mechanical view of the world. From that view, fixing the planet becomes a matter of tweaking the atmospheric gas composition. When we focus on quantifiable metrics of the climate problem, we may be led to believe that the control of these metrics brings us closer to planetary safety or even healing, when in fact, the root cause drivers of ecological destruction remain active.

In the dominant climate change narrative, humans are an external force driving change to the Earth System in a largely linear, deterministic way; the higher the forcing in terms of anthropogenic greenhouse gas emissions, the higher the global average temperature. Human societies and our activities need to be recast as an integral, interacting component of a complex, adaptive Earth System. This framing puts the focus not only on human system dynamics that reduce greenhouse gas emissions but also on those that create or enhance negative feedbacks that reduce the risk that the Earth System will cross a planetary threshold and lock into a Hothouse Earth pathway.

Humanity’s challenge then is to influence the dynamical properties of the Earth System in such a way that the emerging unstable conditions in the zone between the Holocene and a very hot state become a de facto stable intermediate state.

This requires that humans take deliberate, integral, and adaptive steps to reduce dangerous impacts on the Earth System, effectively monitoring and changing behavior to form feedback loops that stabilize this intermediate state. There is much uncertainty and debate about how this can be done—technically, ethically, equitably, and economically—and there is no doubt that the normative, policy, and institutional aspects are highly challenging. Societies could take a wide range of actions that constitute negative feedbacks, to steer the Earth System toward Stabilized Earth.

While reducing emissions is a priority, much more must be done to reduce direct human pressures on critical biomes that contribute to the regulation of the state of the Earth System through carbon sinks and moisture feedbacks, such as the Amazon and boreal forests, and to build much more effective stewardship of the marine and terrestrial biospheres in general. The present dominant socioeconomic system, however, is based on high-carbon economic growth and exploitative resource use. Attempts to modify this system have met with some success locally but little success globally in reducing greenhouse gas emissions or building more effective stewardship of the biosphere.

Incremental linear changes to the present socioeconomic system are not enough to stabilize the Earth System. Widespread, rapid, and fundamental transformations will likely be required to reduce the risk of crossing the threshold and locking in the Hothouse Earth pathway; these include changes in behavior, technology and innovation, governance, and values.

In addition to institutional and social innovation at the global governance level, changes in demographics, consumption, behavior, attitudes, education, institutions, and socially embedded technologies are all important to maximize the chances of achieving a Stabilized Earth pathway.

Ultimately, the transformations necessary to achieve the Stabilized Earth pathway require a fundamental reorientation and restructuring of national and international institutions toward more effective governance at the Earth System level, with a much stronger emphasis on planetary concerns in economic governance, global trade, investments and finance, and technological development. And even if world leaders somehow got their act together, significant and dangerous levels of warming are still inevitable, baked into the system from all the carbon dioxide that has already been dumped. There’s a time lag between carbon dioxide increase and subsequent effects, between the wind we sow and the whirlwind we reap. Barring a miracle, the next 20 years are going to see increasingly chaotic systemic transformation in global climate patterns, unpredictable biological adaptation and a wild spectrum of human political and economic responses, including scapegoating and war. The middle and later decades of the 21st century — my grandchildren’s adult life’s — promise as it looks like at the moment a global catastrophe whose full implications any reasonable person must turn away from in horror. Society is not simply an aggregate of millions or billions of individual choices but a complex, recursive dynamic in which choices are made within institutions and ideologies that change over time as these choices feed back into the structures that frame what we consider possible. All the while, those structures are being disrupted and nudged and warped and shaken by countless internal and external drivers, including environmental factors such as global warming, material and social innovation, and the occasional widespread panic. We choose from possible options, not ex nihilo.

Our (grand)children will not face the choices we face. They won’t have the opportunities we now have for action. They’ll confront a range of outcomes whose limits were determined by the choices we made. Yet while some degree of warming now appears inevitable, the range of possible outcomes over the next century is wide enough and the worst outcomes extreme enough that there is some narrow hope that revolutionary socio-economic transformation today might save billions of human lives and preserve global civilization as we know it in more or less recognizable form

This requires a fundamental change in the role of humans on the planet: a deliberate and sustained action to become an integral, adaptive part of Earth System dynamics, creating feedbacks that keep the system on a Stabilized Earth.

Intelligent Life

By | Algemeen | No Comments

With networks, we can organize and integrate information at different levels. On a biological level, our bodies are made up of many networks that are integrated at and communicating on multiple scales. From our genome to the molecules and cells that makeup the organs in our bodies all the way out to ourselves in our world: we are fundamentally a network of networks. Living organisms are, in essence, complex systems which process information using a combination of hardware and software. Over time, people figured this out and started to use natural systems as inspiration for efficient solutions. If we listen to what nature is telling to us, we can take better decisions, build more sustainable buildings, create systems that function where and when we need them to, all in one, assign nature solution to human problems. Nature is an ecosystem made from living organisms like us humans.

In thriving living systems, the entire process of divergence, relationship and convergence is self-organizing, set into motion by life itself. In the dynamic, moment-by-moment interplay of divergent parts coming together to create a sufficiently convergent whole, supported and connected by  a consistent yet adaptive relational and governing infrastructure, all animated and guided by the self-organizing spark of life. By this the living system is able to self-organize in order not only to persist but to adapt and ultimately to generate higher, more complex forms of life. Without the spark of life, these outcomes are impossible. With it, the paradox of diversity within unity is reconciled naturally and effortlessly in living systems, generating resilience, innovation and even beauty.

The generation of design (configuration, patterns, geometry, shape, structure, rhythm) in nature is a physical phenomenon that unites all animate and inanimate systems. Design in Nature always shows itself as systems that flow and improve themselves. Systems improve themselves because the movement from chaos to order takes many discrete steps. Nature creates and operates it’s systems efficiently. Natural processes and nature’s problem-solving methods emanate originality, precision, and incredible utilization of resources. It is no wonder why we always return to them when everything else fails or when we are in need of an excellent solution. The natural world is the most adaptable complex system ever known to humans. Evolution provides us with countless examples of systems performing various types of computations. We harnessed some of these ideas and created artificial systems comparable with natural ones, like optimization algorithms inspired by ant colonies This type of probabilistic models is useful for finding optimal solutions for situations encountered in operations management, like the shortest path problem, combinatorics problems in resource allocation, multi-objective optimization problems.

The natural world has always designed intelligent systems. Chemical networks, cells, our brain, or our societies are examples of adaptive and autonomous systems. Everywhere you look, the natural world bursts with examples of complex adaptive systems. However, nature has a significant advantage on its side: time. The majority of these systems are the result of years and years of evolution. Years during which they went from one configuration to the next until they found the best way to solve the task. Fair enough, sometimes constraints prevented a natural system from finding the best solution. Those situations had catastrophic consequences such as the extinction of a species or the loss of a large number of members of a population. Technology does not have the luxury of perfecting a solution over millions of years nor can we afford catastrophes. With all their differences, nature and technology should not be excluding each other. We should pay close attention to the natural world. Start by finding out if a biological system has not already solved the problem. If it has, then there is no point in reinventing the wheel, extract the fundamental principles and methods and transfer them to the problem we are trying to solve. Nature is a source of inspiration, while technology is the engine for creation. Artificial Intelligence (AI) is closely related to biology, neuroscience, or cognitive science. Scientists and practitioners borrowed many ideas from the natural world about computation. AI algorithms and in some instance entire fields derive from biological systems. For example, neural networks use elements from the architecture of the brain. Moreover, we have optimization algorithms inspired by natural evolution, ant colonies, or immune systems. Thus, AI and the natural world share many similarities.

So AI is closer to us then we might think as AI seeks to design and build computational systems that can reason, sense, and make decisions in complex environments and under much uncertainty. The connection between artificial intelligence and nature helps to create advanced technologies. Understanding the processes behind any form of intelligence occurring in the animated world will reshape business  and industrial processes.

Developments in artificial intelligence relate to biological and the natural world. Many algorithms and systems inspired by systems found in nature have been developed: evolutionary algorithms, artificial neural networks computational immunity systems, bio-robotics, swarm intelligence or optimization algorithms based on colonies, hives, or flocks. These ideas transformed how we develop new technologies and solve problems. Bio-inspired solutions benefit from the fact that nature has already refined a lot of the steps to make them as efficient as possible. Thus, by this we are able to develop disruptive technologies by combining engineering and natures fine-tuned solutions.

But, we should seek to act as wise, compassionate stewards of life — our own lives and all life. Only with these intentions can we be trusted to self-govern. And only with this guidance we can proceed in our technological drive.

Understanding our cities: a fusion of complex system science and AI.

By | Algemeen | 6 Comments

The fascinating thing about cities is that different aspects of them allow us to think about them in many different ways. At the level of urban infrastructure, cities certainly have features of machines, with vast constructed networks involved in transporting people, water, electricity, and waste.

At the level of the economy, cities resemble complex ecosystems, with companies and individuals filling specific niches and all living and working in a symbiotic dance. And at the level of growth and change, cities also feel like living, breathing, constantly growing and changing organisms.

But ultimately, the fact that a city has features of both a machine, a societal ecosystem, as well as a living thing means that a city is truly its own category: a novel type of socio-ecological-technological system that humans have made, and is perhaps one of our more incredible inventions.

When something is complicated, it is intricate but often lacks the dynamics that makes a system hard to understand. On the other hand, a complex system implies feedback, a sensitive dependence on the initial conditions, and emergent phenomena that are hard to predict.

As our cities’ systems grow and increasingly become interconnected, we are finding ourselves in a realm of the entanglement at the level of our cities. All cities face challenges, decision-making and accountability in a complex ‘system of systems’, of both traditional systems, such as critical infrastructure, as well as new ones resulting from emerging technologies, such as virtualization, sensor networks, etc. All aspects of a city’s life are complex combinations of events in both the real world (and physical space) and digital world (of cyberspace) and many transactions and interactions take place in or between both. Wherever they take place, the outcomes are certainly felt in the real world of a city’s stakeholders. For dynamical models to be realistic, they need to have accurate initial conditions, exact causality between systems variables and defined kinetics. The other issue with dynamical models of complex systems is the nonlinearity characteristic of complex systems. Because of the complex relationships between the variables in complex systems, the dynamics of the system quickly become nonlinear and complex.

A productive response involves looking at methodologies to understand living organisms or ecosystems. Since cities do resemble living things, at least in certain ways, perhaps we can use these approaches for living things and apply them to our own constructions, specifically our cities.

Obviously, ‘biological thinking’ can help us to better understand our urban environment, but we might also use ideas from physics to understand how innovation and productivity scale with the population of a city, network science to understand the many different diffuse networks that serve our cities, and even the quantitative social sciences to see how information spreads within an urban population.

We should be careful when we observe regularities in the global behavior of such systems: those regularities should not be taken as a clue that a formal, analytic explanation is lurking beneath the surface. The term complex system is used to describe precisely those cases where the global behavior of the system shows interesting regularities, and is not completely random, but where the nature of the interactions between the components is such that we would normally expect the consequences of those interactions to be beyond the reach of analytic solutions. Methods based on self-organization featuring emerging behaviors are very suitable for facing the complexity of the system.

These kind of systems are typically tackled by drawing inspiration from natural systems, where an intrinsic self-organization exist by which the globally intended behavior emerges out of local interaction of individuals. Given the intrinsic complexity of these applications then, new innovative techniques and tools for their analysis, design and deployment, are to be conceived. They  have to support the designer in controlling the emergence of adaptive behavior and in making qualitative and quantitate predictions about how the system works and about possible design errors.

There is a relationship between the study of complex systems, and the techniques of multi-agent system modeling. Multi-agent system modeling is about generative modeling of social processes that is computable in the mathematical sense. Urban components, actors are relatively simple components in the complex system of the city. Or more specifically, each component’s behavior is relatively simple compared to what the overall urban system is doing. A city as a whole is capable of engaging in complex behaviors. In contrast, no one single component, actor will have the impulse or knowledge to undertake such collective tasks on its own. It’s these collective behaviors that arise unexpectedly that are called ’emergent’ behaviors.

Complexity describes the behavior — it captures the available information, sensory capabilities, interaction dynamics and the range of possible actions a system can take. Complexity captures these degrees of freedom and the information available, while emergent phenomena are the actual behaviors, the occurrence or the appearance of those behaviors.

Emergence happens when the system has evolved to some critical point. In self-organized systems, critical states act as a kind of attractor. Once it reaches that critical state, the system seems to flip a switch and become resilient to future disruptions — the same disruptions that drove them to criticality in the first place. A collective then emerges, whose behavior as a whole is no longer correlated to the behavior of individual components. In this way, the system maintains its decentralized character, yet can act as a single entity. Thus, in tying the concepts to computational systems, the expression of any algorithms of these individual components must necessarily be simple, distributed and scalable. So while any system may begin with a simple set of components, under the right conditions, it will nevertheless be enough to generate a diverse range of differently-scaled systems, whether in nature or computing.

Ultimately, any sort of model that describes a complex system can be useful in providing insight into how cities operate, they must always be used with a certain amount of humility, in recognition of the complex reality that is a city.

The challenge of city intelligence is, to employ a biological analogy, more like genetic engineering than mechanical engineering, and part of the solution will require rewriting a city’s DNA.

Understanding and modelling cites, defined as the tightly intertwined social-economic-environmental system that humanity now inhabits, requires addressing human agency, system-level effects of networks and complex coevolutionary dynamics. Analyzing and understanding these dynamics sheds light on a coevolutionary view of urban dynamics in the Anthropocene including multiple development pathways, obstacles, dangerous domains and the sought-after safe and just space for humanity.

Theory and models of biogeophysical dynamics are well established, and our efforts developing  an adaptive network and flexible framework for modelling social-economic-environmental urban dynamics, regime shifts and transformations in an emergent and dynamic way, are offering interesting perspectives.  Dynamic prescription of scenarios, including phenomena such as social learning, segregation, norm and value change, and group dynamics such as coalition formation are very promising.

Developments in artificial intelligence relate to biological and the natural world. Many algorithms and systems have been developed inspired by systems found in nature. Examples are evolutionary algorithms, artificial neural networks computational immunity systems, bio-robotics, swarm intelligence or optimization algorithms based on colonies, hives, or flocks. These ideas transformed how we develop new technologies and solve problems. Bio-inspired solutions benefit from the fact that nature has already refined a lot of the steps to make them as efficient as possible. Thus, we will develop disruptive technologies by combining engineering and natures fine-tuned solutions.

Can we, based on this knowledge, experiences, develop intelligent models to visualize urban dynamic relations, feedbacks with the ability to process relevant (!) amounts of critical data? Urban modeling supported by artificial intelligence, with its ability to analyze scores of information from varied sources, can tease out the interactions between attributes and let us understand and predict the levers across the system we need to activate to enact change. Could the increasingly complex systems needed to manage the next generation of megacities become our first true artificial intelligence?  As we already have the models to understand and describe urban systems, the next step is to build artificial intelligence capabilities into our urban system modelling. A fusion of AI and complex system science will be vital to fully understand the urban web of life and maximize social-economic and ecological assets and values and catalyze a myriad of innovations. A real-time digital ‘dashboard’ for urban system management that would enable the monitoring, modelling probabilistic programming and an array of statistical machine-learning techniques. A decision support system for the management of these complex systems at a scale and speed never before possible. We have our urban system modelling and AI methods to do this. The challenge is to build something truly transformational, easy to use in real-time, open-access and data-dense, initiative uses machine learning and simulation modelling (urban design & architecture) to create a 3-4D living model of a (specific) city. This will require collaboration among partners and so we are building a platform (we still have some hurdles to take) that can bring the breakthrough: prototyping a Digital Urban Twin in its full form.

We have a once-in-our-lifetime opportunity

By | Algemeen | No Comments

The Holocene epoch of the last 10,000 years or so is defined by highly unusual stability in the Earth system. In particular, the climate system shows little variability compared to the preceding late Pleistocene. The Holocene is now giving way to the Anthropocene, in which human influences introduce instability in the Earth system of a degree unprecedented in human history – but common in geological time. The consequences for all political institutions, not just those parts of government normally classified as environmental, are profound.

This unusually stable Earth system of the Holocene epoch of the past 10,000 years, in which human civilization arose, is yielding to a more dynamic and unstable Anthropocene driven by human practices. The consequences for key institutions such as states, markets, and global governance, are profound. Path dependency in institutions complicit in destabilizing the Earth system constrains response to this emerging epoch. Institutional analysis can highlight reflexivity as the antidote to problematic path dependency. A more ecological discourse stresses resilience, foresight and state shifts in the Earth system. Ecosystemic reflexivity can be located as the first virtue of political institutions in the Anthropocene. Undermining all normative institutional models, this analysis enables re-thinking of political institutions in dynamic social-ecological terms.

The domains  variening from the nitrogen and carbon cycles to ocean acidification, urbanization, and climate change, energy and material use etc– might at first appear vastly different. Yet there are also significant similarities. Importantly, all  domains exhibit key manifestations of the changed role of humankind in the planetary system, as it is captured in the notion of the Anthropocene. Each displays different dimensions, but all  are inevitably entangled in the complexities of the Anthropocene. Moreover, analysis manifests the global links through numerous interdependencies and teleconnections. The interdependencies, inequalities and disparities that are uncovered in exploring the domains have important consequences for the governance challenge of the Anthropocene and the underlying need for fundamental changes in social values and development pathways.

Physical non-linear systems, societal complexity, co-evolution of socio-epistemic formations, intricate feedback loops between the material and the mental, econophysics, city planning, ……. Complexity is, without a doubt, a more than appropriate term for the Anthropocene. The interconnection of entities, places, agencies, and times is a strong conviction across the disciplinary board when it comes to the world today. Thus, it has become difficult to imagine a system that is, indeed, non-complex. Problems tend to become ever more wicked, solutions ever more tentative and short-lived. There seems to be a general limit not only to understanding but also to the forms of representation itself.

Understanding the impact of the Anthropocene is understanding the Earth System as being influenced by biogeophysical feedbacks within the system that can maintain it in a given state (negative feedbacks) and those that can amplify a perturbation and drive a transition to a different state (positive feedbacks). Some of the key negative feedbacks that could maintain the Earth System in Holocene-like conditions— notably, carbon uptake by land and ocean systems—are weakening relative to human forcing, increasing the risk that positive feedbacks could play an important role in determining the Earth System’s trajectory. Most of the feedbacks can show both continuous responses and tipping point behavior in which the feedback process becomes self-perpetuating after a critical threshold is crossed; subsystems exhibiting this behavior are often called tipping elements. The type of behavior—continuous response or tipping point/abrupt change—can depend on the magnitude or the rate of forcing, or both. Many feedbacks will show some gradual change before the tipping point is reached.

Human feedbacks in the Earth System are an external force driving change to the Earth System in a largely linear, deterministic way; the higher the forcing in terms of anthropogenic greenhouse gas emissions, the higher the global average temperature. However, analysis argue that human societies and our activities need to be recast as an integral, interacting component of a complex, adaptive Earth System. This framing puts the focus not only on human system dynamics that reduce greenhouse gas emissions but also, on those that create or enhance negative feedbacks that reduce the risk that the Earth System will cross a planetary threshold and lock into a -as example Hothouse Earth pathway.

The Anthropocene holds out the potential to transcend the silently assumed dualism which haunts much of environmental thought; clearly demonstrating that Humanity is imbedded within, entwined with, and vulnerable to nature. Arguing that as Humanity is undoubtedly contained within and impacting nature through its activities and as nature can be seen to be responding reciprocally to those human activities, that both Humanity and Nature must be understood as existing as a singular interconnected system.

At its core, the Anthropocene commits the practice and understanding of human ethics to the unprecedented proportions and dynamics of the epoch. The entire physical scale of the planet—from the individual to the global—is compressed down to questions of conscience, responsibility, and empathy. This ethical reorientation extends not only for and towards one’s immediate neighbor, including the next proximity along the scale, but also to the very remote human, or non-human, entity. Modernity seems to have interrupted long-held principles of spatiotemporal ethics, defined by an integral continuity between past and future generations, as well as a clear positioning within an immediate environment.

Recognition of the Anthropocene connotes a powerful challenge to human institutions, as the non-human world becomes impossible to ignore as a central player in human history. This challenge merits more than response from environmental governance conceived as a niche area to be consigned to a government department or an academic sub-discipline, or even the ‘mainstreaming’ of ecological concerns into all areas of government. By confirming the causal force of human social processes in driving the character of the Earth system, whose instability in turn becomes a larger force, the Anthropocene forces a re-think of social-ecological systems and the place of political institutions therein (along with deep commitments about what constitutes rationality in these institutions and beyond). The depth, novelty, dynamism, and complexity of the challenge call to the ecosystemic dimension of reflexivity effectively understanding the active Earth system, the capacity to reconsider core values such as justice in this light, and ability to seek, receive, and respond to  potential ecological state shifts. This framework can be applied in institutional analysis, evaluation, and design in a way that is true to the dynamic nature of the Anthropocene, and so avoids the temptation to think in terms of static institutional models. Taking the Anthropocene seriously suggests an evolving institutionalism joining inquiry and practice, in the face of existing dominant institutions that fall so far short of the requirements of this emerging epoch.

 

Behaving like children rampaging through a sweetshop.

By | Algemeen | No Comments

We have to recognize that our impact is game-changing on this planet, that we are all responsible, and that we have to become stewards of nature – as a part of it, rather than behaving like children rampaging through a sweetshop.

The Anthropocene as new epoch of geological time in which human activity is considered such a powerful influence on the environment, climate and ecology of the planet that it will leave a long-term signature in the strata record. And what a signature it will be. We have bored 50m kilometres of holes in our search for oil. We remove mountain tops to get at the coal they contain. The oceans dance with billions of tiny plastic beads. Weaponry tests have dispersed artificial radionuclides globally. The burning of rainforests for monoculture production sends out killing smog-palls that settle into the sediment across entire countries.

And the impacts of a still-avoidable sixth mass extinction would likely be so massive, catastrophic, widespread and, of course, irreversible. In the past, it has taken life ten to thirty million years to recover after such an extinction, 40 to 120 times as long as modern-looking humans have been telling tales by firelight. Future changes driven by humanity may go so far as to create not just a new epoch in geologic history – such as the Anthropocene – but a fundamental reshaping of Earth on par with the rise of microbes or the later shift from microbes to multicellular organisms.

We have become titanic geological agents, our legacy legible for millennia to come.

To be more specific: the Anthropocene is a compelling concept and has been beneficial, exposing the effects human actives have wrought within and upon nature – initiating the planet’s sixth mass extinction event, warming the planet and altering its climate through exorbitant emissions of greenhouse gases, triggering the warming, expansion and acidification of the oceans as well as the subsequent death of coral reefs and other ocean life; polluting and exhausting the Earth’s fresh water supply and landmass through intensive agricultural practices, mining, deforestation, and wasteful consumption; irradiating the planet through the prolific use of nuclear weapons; etcetera, and enabled thought to move beyond oversimplified and partial conceptualizations of climate change, localized views of pollution, isolated understandings of extinction, etcetera towards a more holistic understanding of diverse ecological crises as bound together through their relations to human activities. Rightly associating the manifold ecological crises arising within the contemporary world to the interactions humans have with nature.

The Earth System is usually defined as a single, planetary-level complex system, with a multitude of interacting biotic and abiotic components, evolved over 4.54 billion years and which has existed in well-defined, planetary-level states with transitions between them. A state defined as a distinct mode of operation persisting for tens of thousands to millions of years within some envelope of intrinsic variability.

This system is driven primarily by solar radiation and is influenced by other extrinsic factors, including changes in orbital parameters and occasional bolide strikes, as well as by its own internal dynamics in which the biosphere is a critical component. The trajectory of the Earth System is influenced by biogeophysical feedbacks within the system that can maintain it in a given state (negative feedbacks) and those that can amplify a perturbation and drive a transition to a different state (positive feedbacks). Some of the key negative feedbacks that could maintain the Earth System in Holocene-like conditions— notably, carbon uptake by land and ocean systems—are weakening relative to human forcing, increasing the risk that positive feedbacks could play an important role in determining the Earth System’s trajectory.

Most of the feedbacks can show both continuous responses and tipping point behavior in which the feedback process becomes self-perpetuating after a critical threshold is crossed; subsystems exhibiting this behavior are often called tipping elements. The type of behavior—continuous response or tipping point/abrupt change—can depend on the magnitude or the rate of forcing, or both. Many feedbacks will show some gradual change before the tipping point is reached.

Complexity is, without a doubt, a more than appropriate term for the Anthropocene. The evolving, dynamic synergies across socio-cultural, socio-economic system, environment, biodiversity, ecosystems, and climate, the interconnection of entities, places, agencies and times is a strong conviction across the disciplinary board when it comes to the world today. Physical non-linear systems, societal complexity, co-evolution of socio-epistemic formations, intricate feedback loops between the material and the mental, econophysics, urbanization, are challenging our knowledge and experience.

In the future, the Earth System could potentially follow many trajectories, often represented by the large range of global temperature rises simulated by climate models. In most analyses, these trajectories are largely driven by the amount of greenhouse gases that human activities have already emitted and will continue to emit into the atmosphere over the rest of this century and beyond—with a presumed quasilinear relationship between cumulative carbon dioxide emissions and global temperature rise. However, biogeophysical feedback processes within the Earth System coupled with direct human degradation of the biosphere may play a more important role than normally assumed, limiting the range of potential future trajectories and potentially eliminating the possibility of the intermediate trajectories. There is a significant risk that these internal dynamics, especially strong nonlinearities in feedback processes, could become an important or perhaps, even dominant factor in steering the trajectory that the Earth System actually follows over coming centuries.

Fysiek en mentaal gezond in de stad

By | Algemeen | No Comments

Menselijke sensorische organen en systemen evolueerden om te reageren op onze natuurlijke omgeving. We zijn intrinsiek nog steeds verbonden met de natuur. Ook zijn onze behoeftes op de natuur gebaseerd en we zijn in veel gevallen op de natuur aangewezen, zowel voor wat betreft onze fysieke en materiële behoeften (voedsel, kleding, werktuigen, bouwmaterialen, medicijnen, etc.). De natuur komt ook tegemoet aan onze kunstzinnige, emotionele, intellectuele en spirituele verlangens. Recente studies hebben aangetoond dat het leven in steden en stedelijke omgevingen onze fysieke en mentale gezondheid degradeert. Kunstmatige en besloten ruimten, gestandaardiseerde architectuur, lawaai of vervuiling verhogen het risico op het ontwikkelen van stress, angststoornissen, diabetes, cardiovasculaire en immuunziekten, enz.

Zijn onze lichamen en geesten gevangen in die lagen asfalt, glas en beton, gestikt door onze eigen activiteit? Het stadsleven, mentaal en fysiek welzijn zijn op veel manieren onderling verbonden. Dit web van onderlinge verbindingen is echter nog lang niet voldoende begrepen. We hebben tot nu toe grotendeels verzuimd om strategieën te ontwikkelen voor coördinatie van de bi-directionele interactie tussen stedelijk leven en mentaal en fysiek welzijn.

Hoewel we er niet echt op letten, analyseert ons lichaam en brein voortdurend tientallen stimuli uit de fysieke ruimte en activiteit om ons heen. Deze zintuiglijke ervaring heeft een grote invloed op de manier waarop we onze dagelijkse omgeving waarnemen en daarmee ook op onze fysiologie en psyche.

In veel gevallen werken de wetenschappelijke geneeskunde en onderzoekers in termen van afzonderlijke oorzaken (waar overigens helemaal niets mis mee is!): specifieke agentia die specifieke ziekten veroorzaken. Een infectie werd bijvoorbeeld alleen veroorzaakt door de proliferatie van bacteriën, terwijl andere soorten slechte gezondheid het gevolg kunnen zijn van virussen, toxines, ongelukken of gebreken in iemands genetische samenstelling. De acceptatie van het feit dat stress verband houdt met hart- en vaatziekten of met andere gezondheidsproblemen is alledaags geworden. Onderzoek toont echter ook veel wederzijdse verbanden tussen het centrale zenuwstelsel aan die ervaringen herkennen en registreren; het endocriene systeem, dat hormonen produceert die veel lichaamsfuncties besturen; en het immuunsysteem, dat reacties op infecties en andere uitdagingen organiseert.

Meer recent onderzoek, doch minder algemeen erkend, belicht de relaties tussen gezondheids- en gedragsmatige, psychologische en sociale variabelen. De associatie tussen sociaal-economische status en gezondheid, of de invloed van sociale netwerken, de kwaliteit van onze dagelijkse ruimtelijke leefomgeving, huidige of verwachte werkstatus en persoonlijke overtuigingen, zijn van groot belang voor fysieke en mentale gezondheid. Deze onderzoeken documenteren niet alleen het belang van deze factoren, maar beschrijven ook enkele van de betrokken mechanismen. Onderzoek naar de bi-directionele en multiniveau relaties tussen gedrag en gezondheid, ondersteund en bevestigd door technologie en door conceptuele ontwikkelingen in de gedrags-, biologische en medische wetenschappen levert steeds meer inzicht in de complexe relaties tussen mens en zijn omgeving. Ons begrip van de interacties tussen hersenfunctie fysieke gesteldheid en gedrag is verder verrijkt door vooruitgang in gedragsneurobiologie, neurowetenschappen en neuro-endocrinologie van moleculaire mechanismen tot psychologische systemen.

Op een biologisch niveau bestaat ons lichaam -dus- uit vele netwerken die geïntegreerd zijn in en communiceren op meerdere schaalniveaus. Van ons genoom tot de moleculen en cellen die de organen in ons lichaam vormen tot de externe relatie met onze maatschappelijke en natuurlijke omgeving, de wereld om ons heen. We zijn fundamenteel een netwerk van netwerken. Het is niet voldoende om slechts een deel van een systeem te begrijpen bij het bestuderen en begrijpen van de complexiteit van ons menselijk functioneren. Wat betekent dit precies? In welke zin is het geheel meer dan de som der delen? Het antwoord is: relaties. Alle essentiële eigenschappen van een levend systeem zijn afhankelijk van de relaties tussen de componenten van het systeem. Systeemdenken betekent denken in termen van relaties. Het leven begrijpen vereist een verschuiving van focus van ‘onderdelen’ naar relaties. Het doorzien en begrijpen van relaties betreft niet alleen de relaties tussen de componenten van het systeem, maar ook die tussen het systeem als geheel -bijvoorbeeld ons lichaam en psyche- en de omringende grotere systemen. Met de relaties tussen het systeem en zijn omgeving bedoelen we de context van ons functioneren.

Het is daarom van groot belang dat we beseffen dat wij meer zijn dan een statische configuratie van componenten in een geheel. Er is een voortdurende stroom van materie -voedsel- en energie door ons lichaam als een levend systeem; er is ontwikkeling en er is evolutie. Het begrijpen van ons lichaam en onze geest als levende structuur is onlosmakelijk verbonden met het begrip van metabole en ontwikkelingsprocessen. Dit omvat dus een accentverschuiving van structuur naar proces.

Het handhaven van constante en geschikte interne lichamelijke en mentale omstandigheden en het functioneren in het licht van veranderende omgevingsvariabelen wordt homeostase genoemd. Acute of chronische stress bestaat uit vele gelijktijdige verschuivingen in het fysiologische functioneren van de cardiovasculaire, respiratoire, musculaire, metabolische, immuun- en centrale zenuwstelsel. Fysiologische veranderingen kunnen gepaard gaan met veranderde emotionele reacties, verhoogde waakzaamheid, verhoogde risicobeoordeling, verbeterde geheugenopslag en herstel en motivatie.

Zodra we de processen en patronen van relaties tussen ons lichaam, geest en omgeving begrijpen zijn we veel beter in staat diagnoses te stellen die ons in staat stellen om het dagelijks leven te ondersteunen, weerbaarder te worden en te functioneren in een steeds complexer en versnellende samenleving. We zullen ons realiseren dat deze interferenties de fundamentele oorzaken zijn van veel huidige medische en psychische klachten.

Voor het versterken van ons menselijk welbevinden, of het wegnemen van belemmeringen daartoe, moeten we als eerste begrijpen hoe onze psyche, biologische constitutie en de maatschappelijke en fysieke omgeving waarin we verkeren op elkaar inwerken. Als tweede moeten we een gecoördineerde integratieve behandelstructuur uitwerken.

Voor het bevorderen van ons welzijn, reduceren van stress en verhogen van weerbaarheid en gezondheid moeten we de netwerken op verschillende schaalniveaus integreren. Dit om de oorzakelijkheidsketen van biologische en mentale disfuncties te formuleren en om dynamische, samenhangende oplossingen te bieden. Daarom biedt de Get Vital scan en het Get Vital progamma een zinvol inzicht om meer geïntegreerd toestandsovergangen in onze biologische systemen te analyseren, te behandelen en eventueel te voorspellen. Meer weten? yisc.nu

A Rapidly Changing Earth System.

By | Algemeen | No Comments

The arrival of the age when human activity has come to dominate and seriously compromise the stability of the Earth System poses fundamental questions for our cultural, social and economic institutions, our communities, and our systems of governance. Three decades of internationally coordinated research on the Earth system has led to the conclusion that Earth has entered a new geological epoch – the Anthropocene.

Humanity will face a turbulent road of rapid and profound changes and uncertainties on route to a politically, socially and ecologically resilient society. The Anthropocene changes our relationship with the planet and the stability and resilience of the Earth system as a whole.

The globally dominant industrial growth economies operate as if reality is about organizing inert matter in efficient ways to satisfy human needs and wants and generate surplus value. This cultural ‘operating system’ couples our everyday taken-for-granted assumptions about the world to an ideology of dead matter, human utility and perpetual growth. The fundamental challenge of the Anthropocene is to restore a commitment to the vitality of life in all its forms on this planet as the basis of our institutions and professions. This is the cultural renaissance the Anthropocene calls forth.

Earth’s entry into an anthropogenic era poses challenging questions for the long-term sustainability of global human civilization. It is, in fact, not clear if a planetary civilization as energy-intensive as ours can be sustained for centuries. While some aspects of this question rest within political science and sociology, a broader perspective is developing on the transition and transformation, that only a new collaboration among the physical, biological, and social sciences can address to illuminate and inform the choices we face.

In addition, the trajectory will almost surely be characterized by the activation of some tipping elements (Tipping Cascades) and by nonlinear dynamics and abrupt shifts at the level of critical biomes that support humanity. Current rates of change of important features of the Earth System already match or exceed those of abrupt geophysical events in the past. With these trends likely to continue for the next several decades at least, the contemporary way of guiding development founded on theories, tools, and beliefs of gradual or incremental change, with a focus on economy efficiency, will likely not be adequate to cope with this trajectory. Thus, in addition to adaptation, increasing resilience and anti-fragility will become a key strategy for navigating the future. There is significant evidence from a number of sources that the risk of a planetary threshold and thus, the need to create a divergent pathway should be taken seriously.

The Earth System may be approaching a planetary threshold that could lock in a continuing rapid pathway toward much warmer conditions. This pathway would be propelled by strong, intrinsic, biogeophysical feedbacks difficult to influence by human actions, a pathway that could not be reversed, steered, or substantially slowed.

The impacts of on human societies would likely be massive, sometimes abrupt, and undoubtedly disruptive. Avoiding this threshold by creating a stabilized pathway can only be achieved and maintained by a coordinated, deliberate effort by human societies to manage our relationship with the rest of the Earth System, recognizing that humanity is an integral, interacting component of the system. Humanity is now facing the need for critical decisions and actions that could influence our future for centuries, if not millennia .

Generic resilience-building and anti-fragility strategies include developing, buffers, redundancy, diversity, and other features of resilience and anti-fragility that are critical for transforming human systems in the face of global ecological and natural systems and possible surprise associated with tipping points. Such a strategy include maintenance of diversity, modularity, and redundancy; management of connectivity, openness, slow variables, and feedbacks;  understanding social–ecological systems as complex adaptive systems, especially at the level of the Earth System as a whole.

So…..

… the Earth has been pushed out of the pre-industrial Holocene norm by human activities. How will the Anthropocene evolve? Even with a rapid and decisive shift of contemporary human societies toward sustainable development, the Anthropocene will remain a distinctly different epoch from the Holocene.

The current trajectory of human societies would lead to an Anthropocene that is a much warmer and biotically different state of the Earth System, one that is no longer governed by the late Quaternary regime of glacial–interglacial cycles, and with far fewer species. Earth in a much warmer greenhouse state would be nothing new. However, it would be novel for Homo sapiens, which evolved only 200,000 years ago. Under  this scenario, the Earth System would be markedly different from the one humans now know, and from the state that supported the development of human civilization. Which trajectory the Anthropocene follows depends on the decisions and actions of global society today, and over the next few decades.

Human technology could be responsible for many more manifestations of ‘nature’ than the previous Earth was ever capable of sustaining.

By | Algemeen | No Comments

Humans are altering the planet, including long-term global geologic processes, at an increasing rate. Any formal recognition of an Anthropocene epoch in the geological time scale hinges on whether humans have changed the Earth system sufficiently to produce a stratigraphic signature in sediments and ice that is distinct from that of the Holocene epoch.

Biologically, there is nothing remarkable in the fact that humans are agents of ecological change and environmental upset. All species transform their surroundings. The dizzying complexity of landscapes on Earth is not just a happy accident of geology and climate, but the result of billions of years of organisms grazing, excavating, defecating, and decomposing. Nor is it unusual that certain lucky species are able to outcompete and eventually entirely displace other species. The Great American Interchange, when North American fauna crossed the newly formed isthmus of Panama to conquer South America three million years ago is just one among countless examples of swift, large-scale extinctions resulting from competition and predation.

The driving human forces responsible for many of the anthropogenic signatures are a product of the three linked force multipliers: accelerated technological development, rapid growth of the human population, and increased consumption of resources. These have combined to result in increased use of metals and minerals, fossil fuels, and agricultural fertilizers and increased transformation of land and nearshore marine ecosystems for human use. The net effect has been a loss of natural biomes to agriculture, cities, roads, and other human constructs and the replacement of wild animals and plants by domesticated species to meet growing demands for food. This increase in consumption of natural resources is closely linked to the growth of the human population. Anatomically modern Homo sapiens emerged ~200,000 years ago . Around the start of the Holocene, humans had colonized all of the continents except Antarctica and the South Pacific islands and had reached a total population estimated at 2 million. Up to this point, human influence on the Earth system was small relative to what has happened since the mid-20th century; even so, human impacts contributed to the extinction of Pleistocene megafauna. However, the key signals used to recognize the start of the Holocene epoch were not directly influenced by human forcing, which is a major distinction from the proposed Anthropocene epoch.

What is remarkable, however, is the stunning speed of human adaptation relative to other species, and that our adaptation is self-directed. From sonar and flight to disease immunity, humans can ‘evolve’ exquisite new traits in a single generation. The Anthropocene represents a catastrophic mismatch between the pace of human technological evolution and the genetic evolution of nearly every other species on Earth. As with many other geological epochs, the Anthropocene has been heralded with a mass extinction, one which is generally accepted to be the sixth great one to occur on Earth.

The Anthropocene represents a catastrophic mismatch

Mass extinctions, however, have always been succeeded by a recovery of biodiversity. The Permian mass extinction made room for dinosaurs to flourish; the Cretaceous extinction gave rise to the marvellous diversification of mammals and birds. These massive adaptive radiation events, where surviving populations swiftly speciate, take anywhere from tens of thousands to tens of millions of years, depending on the degree of the initial extinction and the stability of the Earth’s climate.

Population extinctions today are orders of magnitude more frequent than species extinctions. Population extinctions, however, are a prelude to species extinctions, so Earth’s sixth mass extinction episode has proceeded further than most assume. The massive loss of populations is already damaging the services ecosystems provide to civilization. When considering this frightening assault on the foundations of human civilization, one must never forget that Earth’s capacity to support life, including human life, has been shaped by life itself . When public mention is made of the extinction crisis, it usually focuses on a few animal species (hundreds out of millions) known to have gone extinct, and projecting many more extinctions in the future. But a glance at our maps presents a much more realistic picture: they suggest that as much as 50% of the number of animal individuals that once shared Earth with us are already gone, as are billions of populations. Given the increasing trajectories of the drivers of extinction and their synergistic effects. Future losses easily may amount to a further rapid defaunation of the globe and comparable losses in the diversity of plants, including the local (and eventually global) defaunation-driven coextinction of plants. The likelihood of this rapid defaunation lies in the proximate causes of population extinctions: habitat conversion, climate disruption, overexploitation, toxification, species invasions, disease, and (potentially) large-scale war— all tied to one another in complex patterns and usually reinforcing each other’s impacts. Much less frequently mentioned are, however, the ultimate drivers of those immediate causes of biotic destruction, namely, human overpopulation and continued population growth, and overconsumption. These drivers, all of which trace to the fiction that perpetual growth can occur on a finite planet, are themselves increasing rapidly. Thus, to emphasize, the sixth mass extinction is already here and the window for effective action is very short, probably two or three decades at most. All signs point to ever more powerful assaults on biodiversity in the next two decades, painting a dismal picture of the future of life, including human life.

No matter the severity of the extinction, however, vacant ecological niches are eventually filled and new ones are created as life adapts to a newly empty Earth. Keeping this in mind, it’s possible to argue that not all human activity is antithetical to biodiversity. Our destructive tendencies might actually be a form of creative destruction, clearing the playing field so marginalized actors can dominate. More controversially, human activity may actually create new species and modes of being, just as the Cambrian explosion 530 million years ago was marked by biological breakthroughs such as active predation, hard exoskeletons, and the beginning of the vertebrate body plan.

Our destructive tendencies might be a form of creative destruction

What if we already are in the midst of a previously unnoticed adaptive radiation phase, an ‘Anthropocene explosion’, that has so far gone unnoticed?  Where should we look for this evolutionary event? Three groups of entities are at the cusp of notable speciation events: human-associated animals, genetically engineered organisms, and manmade technologies, both physical and digital.

Firstly, the most obvious beneficiaries of the Anthropocene explosion are those that have been the sole actors in past adaptive radiations, that is, living organisms. Synanthropes—organisms that associate with human settlements—have adopted the human environment as their native habitat, and therefore likely have a bright future ahead of them. Our cultural evolution is mirrored in their genetic evolution. Pests and pathogens, for instance, evolve in concert with pesticides and medicines. Many city animals already show specific adaptations to the loud, hectic and artificially bright urban wilderness. As the Anthropocene marches onwards, the speculative naturalist may be tempted to hope that rats, cats and cockroaches will diversify into new and splendid forms. In the realm of ‘true’ wilderness, certain creatures are thriving as the human machine decimates others. In this area, the ocean is perhaps the starkest example. Scraped clean by long lines and bottom-trawlers, and acidified by a carbon-heavy atmosphere, the oceans face a ‘gelatinous future’ dominated by jellyfish and microbes, which will flourish in the ecological niches vacated by fish. Only the most nihilistic observer, however, would argue that an ocean dominated by jellyfish and microbes has the same value as one teeming with corals, sharks, and whales, or that a rat-and-trash filled alley is as ecologically productive or philosophically inspiring as a forested valley.

Human activity may create new species and modes of being

Although breeding domesticated species for selected traits speeds up genetic change, it will not gift the Anthropocene with fantastic new species. We’ve pushed the genetic envelope in terms of how much milk a cow can produce, or how small a chihuahua can shrink while still remaining a functioning organism. Despite their extravagant appearances, these animals are not distinct species from their wild counterparts. It will be thousands or even millions of years before truly novel species emerge from the diversification of synanthropes and other tenacious clingers-on.

It therefore secondly falls to genetic engineering to add truly novel organisms to the ‘Anthropocene Explosion’. The transgenic GlowFish, for instance, is one of the most well-known and appealing ‘charismatic microfauna’ of the GMO world, a creature which is in many ways as wonderful as the common zebrafish. The GlowFish is a first step towards creating a new, valid species. A creature even more marvellously engineered, perhaps even pieced together gene by gene to construct an organism from the ground up, would be equally valid and worthy of our appreciation and protection as a species that arose through natural selection.

Thirdly, we need to look at technology to see a potential for a new type of evolutionary event. There is something poetic in the fact that the widespread acceptance of the Anthropocene coincides with the moment that our technologies are poised to become as complex and autonomous as organic life. The sphere of human thought, culture, and technology—sometimes called the noosphere or the technium—is not just dependent upon the biosphere but intimately bound up with it, and vice versa. Though we have maintained a stubbornly mechanical conception of technology, in truth the technosphere may be, or be becoming, a valid form of nature, populated by actors that are ‘species’ in everything but name.

Does it falls to genetic engineering to add truly novel organisms to the ‘Anthropocene Explosion’?

Up until now, what has prevented humans from viewing individual technologies in more organismal terms are their predictability and simplicity. What we are beginning to see are the very early stages of man-made technologies that may one day become as richly complex as DNA-based organisms. If technologies should someday exhibit true autonomy, able to gather energy on their own, repair themselves, and reproduce, it would be difficult to argue in good faith that their existence is any less ‘natural’ than that of a grasshopper or anemone. A technological species does not need to mimic an organic one in order to be viable. In fact, a digital or genetically engineered copy of the original is bound to pale in comparison. Rather than creating artificial sentience that matches that of an animal or human, it may be far more interesting to foster new, unprecedented forms of mind and embodiment.

Do we need to look at technology to see a potential for a new type of evolutionary event?

However, individuals of any species in isolation cannot exactly be said to constitute a nature. ‘Nature’ is a highly complex, unpredictable assemblage composed of interacting individuals. No matter how majestic a reminder of the wilderness, a polar bear in a zoo is more a cultural artefact than an aspect of nature; no matter how much it reminds us of a living dog, the Big Dog robot is still more cultural than natural.

Though humans often wrongfully categorize the natural world through the lens of technology—the body is a machine, a forest is a factory—there is a strong resonance between the digital and the genetic. An organism’s ‘hardware’ is encoded in the software of DNA and RNA. Life, in all its apparent glory, exists solely for the propagation of genetic information. Our bodies are elaborate (and disposable) vehicles for our genomes, which have been upgrading from body to body, species to species over the last four billion years.

From this perspective, all of nature is merely the interaction of billions of genetic programs. If this is true, then interacting man-made digital technologies might be the equivalents of physical ecosystems. It’s therefore arguable that the sum total of earth’s information flow has not diminished during the Anthropocene, but rather that biodiversity has merely switched media from nucleotides to electronic circuits. It may be that one day we be able of  perfectly simulating entire ecosystems, from an entire redwood down to the last neuron in a snail’s brain, and that we could run this simulation many times over. Human technology, then, could be responsible for many more manifestations of ‘nature’ than the previous Earth was ever capable of sustaining.

But … is this what we want?

Energy Transformation

By | Algemeen | No Comments

Targets on greenhouse gas emissions and transition towards renewable energy are ambitious. The generation of energy will be increasingly from variable renewables like wind and solar in all sizes, ranging from big offshore wind farms and large solar fields down to urban wind turbines on high rise buildings and rooftop solar panels at individual homes.

Not only the diversity in generation capacity will increase but also the diversity in ownership from a few owners of big power plants in the past to a mix of numerous owners of smaller and dispersed generating plants today and tomorrow.

The prospect of massively distributed clean renewable power generation is becoming a reality more than ever before. The present combination of technology improvements and market-scale developments is soon to be followed by a second wave of more capable and lower cost storage solutions.

Alternating Current (AC) power systems have been in dominant position for over 100 years due to the inherent characteristic from fossil energy driven rotating machines. The high-voltage, high-power grid today is based on AC technology. The large conventional generators connected to this grid are responsible for supplying power, keeping the frequency within limits, and maintaining the voltage within boundaries throughout the nodes on the grid. This has been predominantly unidirectional; i.e., from these large conventional generators to the consumers through the transmission and distribution system. The power supply, demand balancing, and voltage control in such grids have been relatively simple, mainly because of the availability and predictability of the generators.

The gradual changes of load types and distributed renewable generation in AC local distribution systems provide food for consideration of adding Direct Current (DC) networks. In the early stage, power systems were designed to supply the lighting, heating, and motor driving loads which are mainly AC type. However, load evolution in AC local distribution systems have been occurring quietly with the development of power electronics techniques and new lighting equipment for high efficiency of energy utilization and control flexibility.

Recently, two converging factors have renewed interest in DC power distribution. First, there are better alternatives for decentralized power generation, the most significant of these being solar PV panels. Because solar panels can be located right where energy demand is, long distance power transmission isn’t a requirement. Furthermore, solar panels naturally produce DC power, and so do chemical batteries, which are the most practical storage technology for PV systems.

AC power is in many cases converted back to DC power by the adapters of DC-internal appliances like computers, LEDs and microwaves. These energy conversions imply power losses, which could be avoided if a solar powered building would be equipped with DC distribution. In other words, a DC electrical system could make a solar PV system more energy efficient.

Secondly a growing share of our electrical appliances operate internally on DC power.  Traditional AC motors as direct drivers for washing machines, refrigerators, air conditioners and various industrial machines are being gradually replaced by power electronics based AC motors in order to control the motor speed and to save energy. Within the next 10-20 years, we can expect an expansion of the total loads in households being made up of DC consumption. In, for example, a building that generates solar PV power but distributes it indoors over an AC electrical system, a double energy conversion is required.

BENEFITS

Because the operational energy use and costs of a solar PV system are nil, a higher energy efficiency translates into lower capital costs, as fewer solar panels are needed to generate a given amount of electricity. Furthermore, there is no need to install an inverter, which is a costly device that has to be replaced at least once during the life of a solar PV system. Lower capital costs also imply lower embodied energy: if fewer solar panels and no inverter are required, it takes less energy to produce the solar PV installation, which is crucial to improve the sustainability of the technology.

A similar advantage would apply to electrical devices. In, for example, a building with DC power distribution, DC-internal electric devices can do away with all the components that are necessary for AC to DC conversion. This would make them simpler, cheaper, more reliable, and less energy-intensive to produce. The AC/DC adapters (which can be housed in an external power supply or in the device itself) are often the life-limiting component of DC-internal devices, and they are quite substantial in size.

Large advantage is possible in data centers, where computers are the main load. Some data centers have already switched to DC systems, even if they’re not powered by solar energy. Because a large adapter is more efficient than a multitude of small adapters, converting AC to DC at a local level (using a bulk rectifier) rather than at the individual servers, can generate significant energy savings.

OPPORTUNITY

At the moment, when we are ‘discussing’ the energy transition, there is a giant window of opportunity as similar in scope, scale, and character to the data/telecommunication industry’s disruptive migration to solid state computers, microprocessor-based electronics, and the Internet. DC power has come back as an increasingly strong opportunity, thanks to the technology advancements in power conversion, generation, transmission, and consumption. However, in spite of significant advantages in many applications, there are still several challenges to overcome and the DC technology should be integrated into the system through a smooth and step-by-step process. The DC technology has already started to be integrated into the existing AC system step by step. This is leading to the emergence of hybrid AC/DC systems in which AC and DC buses are connected through interlinking, bidirectional converters. Control of the interlinking converter, as the energy bridge between the AC and DC sides, is a critical issue for ensuring stability and utilizing the system potential to improve the quality of service. Microgrids, which are characterized by a combination of dispersed generation units, storage systems and loads, are one key application where hybrid AC/DC systems may offer significant benefits.

Microgrids, as a promising building block of future smart distribution systems, are one of the main areas where the DC technologies are expected to prevail. In particular, hybrid AC/ DC Microgrids may facilitate the integration process of DC power technologies into the existing AC systems.

What’s needed is an electrical energy network of power that can deliver the same systemic virtues to power systems that the Internet produced for communications: the concept of interconnected domains of smaller, more self-reliant grids. These grids should be equally capable of distributing both centrally and widely deployed distributed electricity generation. The present power grids do not get power from distributed sources; they are still highly centralized with little storage capability. Engineering marvels that they are, they have essentially been designed to distribute power generated at large central generation stations in one direction to loads where it is consumed.

 

 

Urban System Engineering

By | Algemeen | No Comments

Urban complexity implies multiple dimensions of interactions over a vast range of phenomena governed for example by economic, physical, ecological and environmental aspects and political, health and educational systems. And of social aspects, cognitive and ethical intelligence like social economic status, equality, demographics, psychological and cognitive factors such as ideology, sexual identity. Ethical intelligence defined as the structural logic to survive, earn value, add value, acquire and manage knowledge and deal with the nature of reality. Revealing these full range of interactions between sets of these variables is difficult. Complex systems, at least theoretically could be a better way of showing such multi-layered interactions. The difficulty is that the way key factors are nested into a depiction or model of a complex system is often reductive or very restrictive, being for the most part much less than dynamic. This is so of autonomous agent systems as well. Network analysis, a common method for analyzing complex systems, is also reductive, missing these factors as well even though much light is thrown on how the complex system connectivity influences it. In a nut shell, complex system need to include temporal or heterochronic relationships (chronocomlexity) between multiple social variables nested nodes and edges.

Urban complexity and resilience, begins with two radical premises. The first is that humans and nature are strongly coupled and co-evolving, and should therefore be conceived of as one ‘social-ecological’ system. The second is that the long-held assumption that systems respond to change in a linear, predictable fashion is simply wrong. According to resilience thinking, systems are in constant flux; they are highly unpredictable and self-organizing, with feedbacks across time and space. In the jargon of theorists, they are complex adaptive systems, exhibiting the hallmarks of complexity. A key feature of complex adaptive systems is that they can settle into a number of different equilibria. The concept of resilience upends old ideas about sustainability: instead of embracing stasis, resilience emphasizes volatility, flexibility, and de-centralization.

Change, from a resilience perspective, has the potential to create opportunity for development, novelty, and innovation. Resilience is not a condition nor a passive state, it is a truly dynamic and societal process, progressive and in flux all the time. So, resilience is neither the mere fact of persistence; nor does the latter reliably imply the former. Resilience is a quality: a capacity to negotiate change through creative responses, including the prospect of transformation to a radically different form when conditions demand. In their current form, cities inherently lack resilience. By pushing Earth’s climate and biosphere out of the dynamics of the Holocene humanity is at risk of moving our planet outside a safe operating space for humanity by altering important feedback loops, potentially producing abrupt and irreversible systemic changes with impacts on current and future generations.

From the start human agency, global social and economic networks and important feedback interactions between human systems and planetary and urban processes – have not been dynamically represented or otherwise resolved in existing and integrated assessment models.

Capturing these dynamics in a new generation of Urban Dynamic Models should allow us to address a number of critical questions about socio-economic-ecological turbulence in our cities.

The biggest challenge in answering such questions is to understand human activities and social structures as the least predictable, but at present also the most influential component of cities in the Anthropocene. Understanding and modelling cites, the tightly intertwined social-economic-environmental system that humanity now inhabits, requires addressing human agency, system-level effects of networks and complex coevolutionary dynamics. Analyzing and understanding these dynamics sheds light on a coevolutionary view of urban dynamics in the Anthropocene, including multiple development pathways, obstacles, dangerous domains and the sought-after safe and just space for humanity.

Theory and models of biogeophysical dynamics are well established, and our efforts developing  an adaptive network and flexible framework for modelling social-economic-environmental urban dynamics, regime shifts and transformations in an emergent and dynamic way, are offering interesting perspectives.  Dynamic prescription of scenarios, including phenomena such as social learning, segregation, norm and value change, and group dynamics such as coalition formation are very promising.

Our existing Urban System Engineering is an exciting approach/model to study such phenomena. Such analysis offers significant potential to augment existing models and methodologies. But we are not there yet, further research, experiments, support is necessary.